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Resumo

Caio Truzzi Lente. Canais de Amplificação: O Papel da Retroalimentação no Viés
de Sistemas de Recomendação. Dissertação (Mestrado). Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2023.

Algoritmos de recomendação tornaram-se essenciais para o funcionamento de diversos sistemas que

usamos cotidianamente, desde quais filmes assistir até quais produtos comprar. Entretanto, com a proliferação

destes modelos nas redes sociais, surgiram também novas preocupações. Evidências anedóticas e um corpo

cada vez mais robusto de pesquisa têm indicado que os algoritmos das redes sociais, por valorizarem

engajamento, podem estar radicalizando usuários através da amplificação de pontos de vista extremos.

Este trabalho pretende estudar algoritmos de recomendação de maneira dinâmica para identificar ciclos de

retroalimentação que podem acabar por polarizar e radicalizar usuários.

Palavras-chave: sistemas de recomendação. viés algorítmico. aprendizagem de máquina.





Abstract

Caio Truzzi Lente. Amplification Pipelines: The Role of Feedback Loops in Rec-
ommender System Bias. Thesis (Masters). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2023.

Recommendation algorithms have become essential to various systems we use on a daily basis, from

what movies to watch to what products to buy. However, with the proliferation of these models on social

networks, new concerns have come to light. Anecdotal evidence and an ever growing body of research

indicate that social network algorithms that promote engaging content might be radicalizing users through

the amplification of fringe viewpoints. The present study aims to examine recommendation algorithms

dynamically as a means to identify feedback loops that could end up polarizing and radicalizing users.

Keywords: recommender system. algorithmic bias. machine learning.
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Chapter 1

Introduction

Social networks have all but taken over contemporary daily life. From the eponymous
socializing, to reading news, to expressing ourselves, social media has creeped into every
corner of society. Most of its side-effects, it could be argued, are positive (shortening
distances, political accountability, social organizing), but they are not perfect institu-
tions.

Social media companies already face significant backlash for their questionable business
model and ethics. Cambridge Analytica’s election meddling (Cadwalladr and Graham-
Harrison, 2018), Facebook’s subliminal experiments (Kramer et al., 2014), YouTube’s
problem with disturbing content marketed at kids (Dredge, 2016), and Twitter’s bot
infestation (Varol et al., 2017) are just a few recent scandals that have put the societal role
of social media into question.

One particular controversy that has taken over public discourse around social networks
is the role that their algorithms might have in radicalizing users, specially younger ones.
The aforementioned experiments conducted by Facebook to influence people’s emotions
and the proliferation of more than questionable videos aimed at children on YouTube
are instances that seem to corroborate the notion that there is something fundamentally
wrong with these companies’ algorithms.

News organizations, in general, have been skeptical of social networks. Journalists and
specialists alike argue that social media’s algorithms (specially recommender algorithms)
are tuned to peddle conspiracy theories, extremist views, and false information (Mozilla
Explains 2021). This would be the source cause for a plethora of what they consider
contemporary evils: religious extremism, anti-democratic leaders, widespread depression
among teenagers, anti-science movements, etc.

This narrative, of course, has been questioned for a variety of reasons. Some say
that it is self serving: traditional news organizations are being displaced by social media
and it would be convenient for them to mine the public’s trust in them (Munger and
Phillips, 2020). Others claim that these recommender algorithms are not to blame for
political polarization and that social networks even have a tendency to favor more left-wing
viewpoints (Ledwich and Zaitsev, 2019).
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The debate around the role of recommender systems in social media radicalization
is still, unfortunately, too recent and based in anecdotes. Since its impacts are all but
universal, more quality research is vital to inform both the public and opinion makers
about if and how much recommendation algorithms influence social media users.

1.1 Social Networks

Social networking services, also referred to as social networks and social media, are
notoriously difficult to define. Some definitions might be too narrow (excluding instant
messaging services), while some might be too broad (including technologies such as
telephone networks). Most definitions (Boyd and Ellison, 2007) include some common
features:

• Internet-based

• Focus on user-generated content

• Users have profiles

• Users can connect

While social-networking-like applications already existed in Usenet, Geocities,
launched in 1994, is usually regarded as the first major social network. Friendster and
Myspace followed in 2003, with Orkut and Facebook slightly lagging behind in 2004. Each
hit their peak at different moments and different countries, but Facebook overtook all of
them in 2009 when it became the most popular social networking service in the world,
still maintaining the title over 13 years later at the moment of writing (Biggest social media
platforms 2022 2022).

Even though all aforementioned social networks are multimedia, that is, users can
post text, photos and videos, some of the most popular services focus on a specific type of
media. For instance, YouTube (2009) centers around videos, WhatsApp (2009) and WeChat
(2011) were originally designed for text-based communication, and Instagram’s (2010)
main focus is photos.

Parallel to all other features and idiosyncrasies, there lay the recommendation al-
gorithms. While a few social networking services (e.g. WhatsApp) do not recommend
any content or profiles to the user, most do and, according to recent studies, these rec-
ommendations have become the main drivers of interactions (Stoica, Riederer, et al.,
2018).

1.2 Recommender Systems

Recommender systems (sometimes called recommendation systems or recommender
algorithms) first appeared in 1992 under the name “collaborative filtering”, even though
that term nowadays refers to a subclass of recommender systems (Goldberg et al., 1992).
The aim of such an algorithm is providing users with personalized product or service
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recommendations, an essential task when considering the ever increasing number of
possible videos to watch, music to listen, products to buy.

The input of a recommender system is usually information about the preferences (rat-
ings, likes/dislikes, watch time, etc.) of consumers for a set of items. Preference information
can be gathered from explicit behaviors (e.g. rating a product in a scale ranging from 0 to
5 stars) or from implicit behaviors (e.g. how much time the user lingers on a product’s
page). These data can be combined with information about the user (age, political leaning,
etc.) in order to create the best possible representation of the user’s preferences.

The output of these systems can come in the form of a prediction or a list of recom-
mended items. In the first case, the goal of the algorithm is approximating the rating
a user would attribute to a yet unrated item, while the second type of output involves
gathering the items that most likely would interest the user. Simple recommender systems
that suggest items similar to the one being queried do not necessarily involve rating
predictions, but it is common to have the list of recommended items based on the ratings
the algorithms estimated the user would give to those items.

Most recommender systems fall into one of four categories according to the filtering
algorithm they use, that it, the strategy for generating predictions or selecting the top-N
items: content-based filtering, demographic filtering, collaborative filtering, and hybrid
filtering (Bobadilla et al., 2013).

Content-based filtering leverages characteristics of the content in order to generate the
recommendations (Ricci et al., 2011). One such algorithm might use the genres of watched
movies in order to recommend new ones, while another might analyze the sound signature
of a song to recommend similar ones, but, either way, all content-based systems establish
a similarity between items as a basis for recommendations. Analogously, demographic
filtering uses demographic data to establish a similarity between users and recommend
items positively rated by similar people.

Collaborative filtering algorithms also recommend items that similar users liked, but,
in this case, the similarity between users is based on past ratings and not demographic
information (Ricci et al., 2011). Hybrid filtering usually mix collaborative methods with
either content-based or demographic filtering (Ricci et al., 2011).

As with other knowledge-based systems, recommendation algorithms have quickly
incorporated neural networks and explainable machine learning techniques over the past
few years. Even though the implementation of YouTube’s recommendation algorithm is a
trade secret, it is known to gather enormous amounts of data about the user’s interaction
with the website and to require Google’s own TPUs in order to be trained. It also involves
two distinct steps: candidate generation (when the billions of videos available on the
platform are quickly narrowed down to a few hundreds that might be relevant) and
ranking (when the algorithm actually attempts to predict the score a user would implicitly
give to the candidate videos) (Anonymous, 2022).

Another relevant aspect of recommender systems that is well-exemplified by YouTube
is the use of balancing factors such as novelty, dispersity, and stability (Zhao et al., 2019).
In the case of Google’s video giant, there is a baked-in bias for recency, strongly favoring
newer videos in detriment of older content (Zhao et al., 2019).
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From this kind of bias stems much debate: as recommender systems explode in popu-
larity, so does research regarding its shortcommings. User radicalization and algorithmic
bias (explicitly programmed or not) are hotly debated subjects in the literature.

1.3 Radicalization and Bias
Opinion polarization is far from a recent phenomenon, and social media is only the

most recent communication medium where it can be detected and studied. An important
question is whether it facilitates or attenuates polarization: anecdotal evidence might
suggest that social network structures incentivize users to gather into antagonistic com-
munities, but this could be a result of people simply being more likely to express their
preferences online, not of some intrinsic property of social media.

One possible byproduct of polarization is radicalization. Despite not being entirely
different phenomena, these concepts deserve distinct levels of attention. While polarization
can be considered a natural part of democratic discourse, radicalization only happens when
certain conditions are met. UNESCO defines radicalization as (Séraphin et al., 2017):

• The individual person’s search for fundamental meaning, origin and return to a root
ideology;

• The individual as part of a group’s adoption of a violent form of expansion of root
ideologies and related oppositionist objectives;

• The polarization of the social space and the collective construction of a threat-
ened ideal ’us’ against ’them,’ where the others are dehumanized by a process of
scapegoating.

The third point is of special importance to the distinction between polarization and
radicalization. The first might be a simple consequence of democratic disagreements
between opposing parties, but the latter involves a dehumanization of the opposition,
which can lead to extremism: radicalism so intense that the only effective strategy is
physically exterminating the opposition.

Understanding how polarization might lead to radicalization (and, ultimately, to extrem-
ism) is, therefore, of paramount significance to cultivate healthy democracies, specially in
the digital age. Since most social networks, as of this writing, are still poorly moderated,
they allow users to be exposed to a plethora of viewpoints, from benign to insidious,
possibly configuring a “pipeline of radicalization” through which regular users end up
radicalized by coming into contact with extreme content (M. H. Ribeiro et al., 2020).

Of course this argument is still very much open for debate. As will be shown in Chap-
ter 2, researchers have found evidences both for and against the pipeline hypothesis and
even proposed other means through which social media might help radicalize users (e.g. the
supply and demand hypothesis (Munger and Phillips, 2020)). Despite all disagreements,
one common point addressed by most research is the role of recommendation algorithms
in serving users with radicalizing content.

Proponents of the pipeline hypothesis, for instance, argue that recommendation sys-
tems, aiming to maximize content consumption, suggest items that reinforce preconceived
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notions of the user and that play on fear and paranoia (M. H. Ribeiro et al., 2020). Content
that appears urgent and leaves the user fearful (for their live, their community, or their
identity) could be more engaging and, therefore, might be more susceptible to being
considered as relevant by the algorithm.

Even if the pipeline hypothesis is correct, specifics of how much algorithms are to blame
for radicalization are still unknown and hard to pin down. Most research about the subject
focuses on specific platforms (like Twitter and YouTube) and have severe limitations
with regards to how much data those companies make available, not to mention the
constant changes made to the algorithms over the years that might alter their radicalization
properties. Evidence for one theory or another must, therefore, apply to recommender
systems in general and be predictive of how they work both in controlled and real life
scenarios.

YouTube, for example, currently has over 2 billion monthly logged-in users (YouTube
for Press 2023), but it makes no significant effort to clarify changes made to the algorithm or
even whether they fulfill their promises of reducing user exposure to radicalizing content.
With more than 500 hours of content being uploaded every minute (YouTube for Press
2023), if 1% of all videos can be considered radicalizing and the algorithm can detect 99% of
them, that still leaves over 25.000 hours of brand new extremist content free to spread on
the platform every year. This goes to show that, in the scale that these companies operate,
depending on the public, even a small fraction of content might still be enough to influence
the overall recommendations made by the algorithm. It is also worth noting that most of
these platforms’ efforts are concentrated in only a few regions (Newton, 2021), so, even if
they actually try and remove the offending content, most of the world would still not be
impacted by their policy changes.

Closely related to user radicalization is the subject of algorithmic bias. YouTube, for
example, has an explicit bias towards recency (Covington et al., 2016), meaning that more
recent videos get "boosted" by their recommendation algorithm. This is explicitly coded
into the system, but there are also implicit biases, learned by watching user behavior.

Stoica (Stoica, Riederer, et al., 2018) studied Instagram profiles before and after the
implementation of their recommendation engine. They discovered that male users had a
slight predilection for following other men, while women displayed no such preference
and, as soon as the recommender system was deployed, engagement with profiles of male
users skyrocketed even though they were the minority on the platform. The algorithm
recognized and leveraged this so called differentiated homophily effectively, but one might
question whether or not this should be the desired outcome of a good recommender
system.

In social networks where recommendations are front and center, such as YouTube, the
algorithm could go from being a mere reflection of user preferences to actively shaping
user behavior. Hypothetically, a minoritary group of highly engaged users with strong
self-reinforcing consumption habits could tip the scales of the algorithm and cause fringe
content to be amplified; this is only one way through which a radicalization pipeline could
spontaneously form in a social network.
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1.4 Research Goals and Achievements
As explained in the previous sections, social networks’ recommendation algorithms

might play a significant role in radicalizing users. This could be, at least in part, a result of
implicit and explicit biases in recommender systems.

We explore the radicalization pipeline hypothesis and, more specifically, try to un-
derstand the mechanisms through which recommender systems can end up learning or
developing biases; the core of this dissertation revolves around the dynamical properties
of recommender systems (i.e., the sequence of items suggested to an arbitrary user over
time) and how feedback loops can create “amplification pipelines” inside these engines.
We focus on multiple experiments that investigate what (if any) are the impacts that this
bias can have in users’ recommendations.

In short, the main motivator of this research is to shed light into the interactions
between user and machine that might lead to real-world extremism.

1.5 Outline
In Chapter 2, we review the available literature about recommender systems and

radicalization, specially with regards to social media. We also make a point to cite some
journalistic efforts made in the past few years, given the fact these endeavors were at the
very vanguard of research into social media extremism.

In Chapters 3 and 4, we develop multiple experiments and consider their impact on
a hypothetical radicalization pipeline. We start with astatic analyses of recommender
systems, intended to better understand how these algorithms behave in a vacuum; then,
we move on to dynamic experiments that simulate a system capable of learning from
its past recommendations. Using the outcomes of these trials, we develop explainable
statistical models to better clarify the inner workings of the deep learning algorithms we
examined.

Finally, in Chapter 5 we summarize our findings, report on the bleeding edge re-
search that was published during our writing process, and propose some future efforts for
researchers in this field.
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Chapter 2

Literature review

There are three types of work that are relevant to the current topic: general literature
about recommender systems, evidences of algorithmic bias, and methods of creating fairer
recommendations. Since this area of study is still mostly unexplored, there is no consensus
on whether social media recommender systems favor extremist content (or even whether
they are actually deradicalisation agents), which means that many references used in this
work might disagree amongst themselves.

2.1 Scientific literature
General literature about recommendation algorithms is abound. One of the most cited

surveys was elaborated by Bobadilla et al. (2013), but works by He et al. (2016) (about
interactive recommender systems), by (Nguyen et al., 2014) (about filter bubbles), and by
Kunaver and Požrl (2017) (about diversity in recommender systems) were also used in
order to draw a complete panorama of the field.

Another relevant article, by Guy et al. (2010), is the landmark paper that inaugurates
the usage of user data alongside labels to create a recommendation algorithm that is
highly accurate and a staple of modern social networks. This essentially starts the usage
of recommenders systems in social media.

When talking specifically about YouTube’s recommendation algorithms, two papers
deserve special attention. The first one, by Covington et al. (2016), marks YouTube’s
move towards the usage of deep neural networks to generate video recommendations. The
authors describe a two-stage model that first generates a list of candidates and then ranks
them, also reporting dramatic performance improvements. The second one, by Zhao et al.
(2019), describing a more recent version of YouTube’s recommendation algorithm, explores
the Multi-gate Mixture-of-Experts technique to optimize recommendations for more than
one ranking objective and the Wide & Deep framework to mitigate selection biases. The
authors also make it clear that YouTube’s recommender system has a strong bias towards
more recent content.

Many authors have also explored how biases in recommendation engines might lead to
user radicalization. Agarwal and Sureka (2015) developed an early example of a technique
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to try and find extremist content on YouTube. Using deep learning algorithms, the authors
create a YouTube crawler that starts from a seed video and iteratively classifies featured
channels and videos according to their potential extremism. A more recent example of this
can be found in Tangherlini et al. (2020), where the authors propose a novel approach for
identifying conspiracy theories online. By analyzing the narrative structure of a conspiracy
theory (Pizzagate) and comparing it to an actual conspiracy (Bridgegate), they create a
system that can guess whether a conspiratorial narrative is or not fabricated. According to
their findings, a multi-domain nature and the presence of keystone nodes are signs that
strongly indicate a conspiracy theory.

Besides just finding and identifying radicalizing content on YouTube, many authors
have been concerned with studying the radicalization dynamics directly. Alfano et al.
(2020), for example, claim to be “the first systematic, pre-registered attempt to establish
whether and to what extent the recommender system tends to promote such [extremist]
content.” Cho et al. (2020) also attempt to understand how users can be radicalized by
the algorithm. By experimentally manipulating user search/watch history, the authors
concluded that algorithmically recommended content can reinforce a participant’s political
opinions.

In the same vein, Faddoul et al. (2020), after some high-profile cases of users being
radicalized through YouTube videos, studied the efforts announced by the platform to curb
the spread of conspiracy theories on the website. The paper aimed to verify this claim by
developing both an emulation of YouTube’s recommendation algorithm and a classifier
that labeled whether a video is conspiratorial or not (precision of 78% and recall of 86%).
The authors describe an overall decrease in the number of conspiracy recommendations,
though not when weighing these recommendations by views.

Three papers that deserve a closer look are those that investigate how regular rec-
ommendation algorithms can learn covert biases in the users of a social network and
amplify them to previously unimaginable rates. Stoica, Riederer, et al. (2018) explore
the existence of an “algorithmic glass ceiling” and introduces the concept of differentiated
homophily. The authors experiment on a Instagram dataset before and after the intro-
duction of algorithmic recommendations and discover that, even though most of that
network’s users were female, the most followed profiles were male. They explain this
phenomenon by postulating that the algorithm learns biases in the population, that is, male
preference for male profiles (which doesn’t happens for females and thus characterizes
an asymmetric—differentiated—homophily), and ends up enhancing this effect. Stoica
and Chaintreau (2019), building on top of their previous work, create a proposal for new
recommender systems that take differentiated homophily into account in order to reduce
the “glass ceiling” effect observed in non-corrected recommendation algorithms. The work
focuses on the theoretical description of the algorithm, but also attempts to validate its
hypothesis in real world data. Stoica (2020), in their most recent paper, show that the
most commonly used metrics in recommender systems “exacerbate disparity between dif-
ferent communities” because they reinforce homophilic behavior of the network. This has
profound implications, since these algorithms might further suppress already minoritary
viewpoints without being explicitly programmed to do so.

Like the aforementioned articles, Matakos et al. (2020) also propose a novel recommen-
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dation algorithm that tries to strike a balance between information spread and ensuring
that the users are exposed to diverse viewpoints. The authors show that this goal is
important if we want to foster healthy online debate, and that the algorithm is efficient
and scalable with a minor approximation. One possible inspiration for these papers might
be one by Su et al. (2016) that studied the network structure of Twitter before and after the
introduction of algorithmic recommendations (“Who to Follow”). The authors of the paper
discovered that all users benefitted recommendations, but that users with already popular
profiles benefitted even more, effectively changing the network structure and dynamics.
Caton and Haas (2020) have recently compiled other valuable information on fairness in
machine learning into a survey.

Because of data limitations, there still are few studies that investigate how recommen-
dation algorithms work dynamically, over time. Burke (2010) point out that most methods
for evaluating recommender systems are static, that is, involve static snapshots of user and
item data. The authors propose a novel evaluation technique that helps provide insight
into the evolution of recommendation behavior: the “temporal leave-one-out” approach. A
more recent example of this approach was developed by Roth et al. (2020). Their paper
delves into the confinement dynamics possibly fostered by YouTube’s recommendation
algorithm. The authors create, from a diverse set of seed videos, a graph of the videos
iteratively recommended by YouTube and, from this, study whether there were created
“filter bubbles”. They find that indeed YouTubes recommendations are prone to confinement
dynamics be it topological, topical or temporal.

Even more recently, Yao et al. (2021) propose an approach for measuring recommender
system bias based on simulated users. Even though this work focuses only on bias towards
popular content, it is of particular importance because it was written by researchers from
Google itself. Some years before, Dash et al. (2019) also proposed a framework for auditing
recommender systems based on its network of users. Another contribution of their work
is a novel quantification of diversity.

A different approach to understanding biases in recommendation algorithms range
from analyzing similarity metrics to developing theoretical bounded confidence models.
Giller (2012) goes with the first strategy, and identifies certain aspects of cosine similarity
that are often overlooked. Starting from simple theorems regarding the density of n-
dimensional spheres, the author concludes that the expected cosine similarity between
random bitstreams might be significantly different from the average. This is noteworthy
because many recommendation algorithms use cosine similarity in order to determine the
similarity between two items to recommend. Sîrbu et al. (2019) go with the latter, providing
an interesting theoretical model of how inherent biases in algorithmic recommendations
might heighten opinion polarization. Using a bounded confidence model, the authors
propose the addition of a term that represents the odds of an algorithm recommending
content that differs from that of a user.

Some recent papers also try to understand how YouTube might be favoring right-wing
and fascist content in specific, as opposed to trying to prove a more general (and possibly
less tractable) claim. Hosseinmardi et al. (2020) find evidence via a longitudinal study
that there exists “a small but growing echo chamber of far-right content consumption”
on YouTube. According to their research, these users are more engaged than most, with
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YouTube generally accounting for a larger share of their online news diet than the average.
The authors, however, find no evidence of this phenomenon being due to recommendations.
A popular article in the field, by M. H. Ribeiro et al. (2020), explored the radicalization
pipeline hypothesis of algorithmic enabled radicalization. The authors collect huge amounts
of YouTube comment data over time, and determine a significant migration of users from
“lighter” content towards more extreme videos.

Twitter was also found to consistently favor right-wing content. Huszár et al. (2021)
conducted a ”long-running, massive-scale randomized experiment“ across 7 countries in
order to investigate the effects of algorithmic personalization on users’ feeds and, according
to their results, “mainstream political right enjoys higher algorithmic amplification than
the mainstream political left”.

Finally, feedback loops are of special interest to this discussion. Caused by the in-
evitable fact that recommender systems must learn from users’ reactions to its own
recommendations, they are widely believed to be a powerful engine of bias amplification
and are discussed at length in the literature. Already in the last decade, Sinha et al.
(2017) investigated the viability of identifying items affected by these feedback loops and
attempted to created a method of deconvolving them. More recently, Jiang et al. (2019)
explored what they called “degenerate feedback loops” and their capability of creating
echo chambers, going as far as proposing a novel approach of slowing down this tendency
towards degeneracy. In a related study, Mansoury et al. (2020) explored how recommender
systems amplify already popular content, but, more importantly, how this tendency might
reduce content diversity and cause users’ tastes to shift over time. Depending on what
a systems values (recency, virality, controversy, engagement), this type of feedback loop
could possibly amplify not “popular” content, but divisive and extremist content.

The hypothesis that social networks have a radicalizing tendency is far from the only
one supported by research; some argue that radicalization happens through different
mechanisms or that it happens to only one subset of users. Munger and Phillips (2020),
for example, published an article that postulates a new model for YouTube radicalization.
According to the authors, YouTube’s algorithm is not to blame, the users themselves are
looking for extreme content and the recommender system only supplies them; this supply
and demand hypothesis was questioned by the scientific community, but its results are
nonetheless significant. Ledwich and Zaitsev (2019) also wrote a controversial paper
where its authors claim to have found evidence to support the hypothesis that YouTube’s
recommendation algorithm favors mainstream and left-leaning channels instead of right-
wing ones. They categorize almost 800 channels into groups of similar political leaning
and analyze recommendations between each group, finding that YouTube might actually
discourage users from viewing radicalizing content. In an even earlier study on news rec-
ommendations of a major Dutch newspaper, Möller et al. (2018) claim that recommenders
systems had no significant impact on content diversity.

Even with a quickly growing body of research, further studies are needed in order to
shed more light into the inner workings of how recommendation algorithms are used by
social networks. Articles like the ones described in this chapter are of utter importance to
this task, but generalist studies that are able to capture dynamics common to all or most
recommender systems are still nonexistent.
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2.2 Journalistic efforts
Since this field of study is still in its infancy, many relevant sources are not scientific in

nature. Journalism, specially when investigative in nature, is a valuable ally when trying
to understand what is happening behind the curtains of social platforms.

Some examples of journalistic endeavors that inform and guide scientific research
include, but are not limited to, a series by Lecher and Yin (2022) on how different are
Americans’ Facebook feeds, a report (in Portuguese) by P. V. Ribeiro (2021) on how the
far-right is still able to cheat YouTube’s attempts at curbing extremist content, and a
whistleblower’s account to Wong (2021) of how Facebook’s executives resist on restricting
fake engagement that is able to distort global politics.

While these journalistic articles don’t rigorously follow the scientific method, they
are at the cutting edge of this field. Science will be the final arbiter of how social media
affects culture and society, but meticulously designed experiments and detailed scientific
papers take years to develop and write. Therefore, as researchers we must pay attention
to sources outside of academia or risk taking too long to address social needs.
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Chapter 3

Static Analysis

Understanding how social networks recommend content to users is central to the
debate around political polarization and radicalization. There are many ways of exploring
recommender systems without examining their code, from simulating their behavior
after careful observation (Yao et al., 2021) to directly collecting recommendation data
(M. H. Ribeiro et al., 2020), but most of them allow us to examine only one perspective
of the algorithm at a time. This means that studying a social network’s recommendation
technique has inherent limitations.

Most of the algorithms currently employed by social media companies are trade secrets.
They are also subject to constant experimentation and tuning (Congratulations, YouTube...
Now Show Your Work 2020), which might render worthless any research performed before
an update to the algorithm, no matter how careful the design of the study was.

With our experiments we aim to make a tangible contribution to the field of recom-
mender systems, specifically how their design might (or might not) foster confinement
dynamics and create degenerate feedback loops. If it does, this could mean that even a
relatively small fraction of the content can tip the algorithm in its favor, amplifying their
message, creating filter bubbles, and possibly sending users on a radicalization spiral if
that topic is related to politics or other contentious subjects.

In this chapter we will analyze a recommendation system statically, that is, without
taking into account its evolution after multiple rounds of training and learning from new
data. This step is essential insofar as it generates valuable information to better orient our
dynamic analyses.

3.1 Datasets

Before discussing any experiment, it is necessary to introduce the datasets used in the
models. The main dataset explored in this dissertation is MovieLens (Harper and Konstan,
2015), a well-known set of movie reviews that has been featured in many recommender
system tutorials and papers for the past few years. The full dataset, with 27,000,000 ratings
applied to 58,000 movies, was enriched by Banik (2017) with information about the movies’
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credits, metadata, keywords, and links. The first five rows of the dataset are reproduced in
Table 3.1.

user_id movie_id rating timestamp
1 1193 5 978300760
1 661 3 978302109
1 914 3 978301968
1 3408 4 978300275
1 2355 5 978824291
1 1197 3 978302268

Table 3.1: First five rows of the MovieLens dataset.

In the end, because of RAM limitations, the dataset used in this chapter was sampled
until 30,689 movies were left; this was the largest dataset that could be processed in a
reasonable amount of time by the hardware to which we had access.

The second dataset, used for validation purposes only, was the Book-Crossing Dataset
(Ziegler, 2004). Just like the enriched MovieLens, this dataset contained entries for ratings
(1,149,780) applied by users (278,858) to items (271,379 books), and information about these
items like title, author, publisher, etc. Since this dataset has fewer ratings, there was no
need to sample it before running any experiment.

3.2 Models
The goal of the static analysis is to test the hypothesis that even a simple recommen-

dation algorithm can demonstrate some sort of bias towards a subset of of items. More
specifically, given an algorithm that is user agnostic, i.e., that cannot be influenced by
users’ personal preferences, would the resulting recommender system still favor any items?
Excluding user information is important because, as demonstrated by Stoica, Riederer,
et al. (2018), users might have their own biases and these could get transferred on to
the model; the objective here is to understand the algorithm by itself without external
influences.

We developed five different models for this purpose, which are described below. All of
them follow the same basic behavior: after the model is trained on the relevant dataset, it
is able to take an item 𝑖 as input and return the 𝑛 items most similar to it, i.e., 𝑛 recom-
mendations. For example, a recommendation algorithm applied the present version of the
MovieLens dataset would generate a list of 30, 689 × 𝑛 items.

This mimics YouTube’s sidebar, which suggests videos similar to the one currently
being watched, with the exception that our models do not take a user’s watch history into
account.

3.2.1 Trivial Model
The first model we developed is the trivial model, which is a sampler that returns 𝑛

movies at random when asked for a recommendation. It is the simplest model against
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which we can compare all others, since it has no mechanism to favor one item over the
next.

3.2.2 Vanilla Model

Besides the trivial model, the simplest model that excludes user information is the
content-based recommender. In the real world this is an algorithm that is able to identify
similar items based on their metadata (description, tags, etc.) and suggest the closest items
to the one being used as input. A straightforward way of building such an algorithm
is creating a vector representation of each item and then using a similarity metric to
recommend the items most similar to the one in question. The chosen similarity metric
was cosine similarity because of its simplicity, robustness, and ubiquity (Sarwar et al.,
2001).

The main non-trivial model used in this study was the one that simply generated
vector representations for the full MovieLens dataset, without any modifications (which
is why it will henceforth be referred to as the vanilla model). The metadata for each
movie was a bag-of-words made up of its keywords, main cast, director, and genres. The
vector transformation was very simple, with each position representing one of the words
of the corpus, and each element indicating how many times that word appeared in the
metadata for that movie. When the recommendation for a movie was requested, the
algorithm measured the cosine similarity between it and every other movie, returning the
IDs belonging to the top 𝑛 most similar vectors.

3.2.3 Cutoff Models

The vanilla model is at risk of being impacted by word frequency: for example, movies
whose metadata share rare words might be recommended less frequently than movies
whose metadata are not so unique. To mitigate this, we developed a model with a cutoff
point after which words would not be included in the vector representation of the items
anymore. Because of this feature, we called this algorithm the cutoff model.

Three cutoff points were tested and only words with an absolute frequency larger than
or equal to 𝑘, 𝑘 = {2, 5, 8}, should be included in the vector representations. These specific
values were chosen empirically, by manually checking every 𝑘 from 1 to 10 and selecting
the ones where there was a significant difference from the previous.

3.2.4 Similarity Models

The next model we tested was intended to validate our choice of distance metric for the
vanilla model. In what we called similarity models, we used other distance metrics besides
cosine similarity (Ricci et al., 2011): cosine distance, Euclidean distance and Manhattan
distance. The goal here was to verify whether other metrics could have a better (or worse)
performance at not creating a subset of movies that ended up more recommended than
the rest.
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3.2.5 Vanilla Model with Synthetic Metadata
The last model we developed was actually the vanilla model trained on a variation

of the original dataset. This validation step was necessary in order to guarantee that the
intrinsic properties of our data were not having an effect on the recommendation profiles
of our previous models.

The new dataset had synthetic (i.e., randomly generated) metadata: the metadata text
for each item was comprised of random words sampled uniformly from the full metadata
corpus. In the case of the MovieLens dataset, the baseline probability of any given word
𝑤𝑖 being added to the metadata of a movie was equal to 𝑃(𝑤), the average probability over
every word in the original corpus.

In addition to this baseline probability, two extra sets of metadata were constructed:
one where each word was 10 times more likely to be selected than 𝑃(𝑤), and another
where each word was 100 times more likely. All three constructed datasets can be concisely
described through the expression 𝑃(𝑤𝑖) = 𝐶 × 𝑃(𝑤), 𝐶 = {1, 10, 100}.

3.3 Experiments
In order to evaluate these recommendation systems, at least qualitatively, we can

compare their recommendation profiles: a summary of how many times each item is
recommended overall by the model. To create this profile, the model is asked to return
𝑛 = 10 recommendations for each item in the dataset according to its internal similarity
metric.

The recommendation profile of the model is the number of times each item showed up
in the full set of recommendations arranged by ranking (i.e., from most recommended to
least recommended). After this computationally intensive calculation, the occurrence of
each ID would be counted and ranked accordingly to facilitate interpretation of results,
that is, the movie ranked number 1 would be the movie featured the most times in the set
of all recommendations, and so forth for every other rank.

This operation is very costly, approaching 𝑂(𝑀𝑁 ) complexity, where 𝑀 is the number
of users in the dataset and 𝑁 is the number of distinct movies.

The baseline for the visualizations presented in this section is MovieLens’ original
review distribution. Figure 3.1a ranks every movie in the original dataset by their review
count, i.e., the number of users that reviewed each movie. It is important to note that we are
not taking user ratings into account for these profiles and this is deliberate: social networks
like YouTube seem to mostly ignore explicit user feedback when making recommendations
(YouTube Regrets 2022).

3.3.1 Trivial Model
Its recommendation profile can be seen in Figure 3.2 and, since it is the sum of many

uniform samples, the number of times each movie is recommended approaches a symmetric
distribution and, therefore, the recommendation profile also approaches a symmetric
distribution. The most recommended movie appeared 25 times in the final list, while the
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(a) Review profile. (b) Log-log plot.

Figure 3.1: Review profile for the full dataset (a) and log-log plot (b).

least recommended movie did not appear at all. Figure 3.2b shows the log-log plot of the
recommendation profile.

(a) Recommendation profile. (b) Log-log plot.

Figure 3.2: Recommendation profile for the trivial model (a) and log-log plot (b).

3.3.2 Vanilla Model
The recommendation profile for the vanilla model can be seen in Figure 3.3a. Here, the

movie ranked number 1 appeared more than 2000 times in the full list of recommendations,
with a power law decay in the number of appearances from then on, as made evident by
the log-log plot on Figure 3.3b.

This recommendation profile is a big departure from the trivial model discussed above
because, for the first time, the log-log plot displays an almost linear decay. This represents
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a much steeper decline in the number of recommendations from the movies most favored
by the algorithm to the least favored.

(a) Recommendation profile. (b) Log-log plot.

Figure 3.3: Recommendation profile for the vanilla model (a) and log-log plot (b).

3.3.3 Cutoff Models

A potential explanation for the difference between trivial and vanilla could reside in
the least used terms in the metadata and that is why we developed the cutoff model. The
results can be seen in Figure 3.4 and, aside from variations in the 𝑦-intercept, all plots are
qualitatively very similar to Figure 3.3a, indicating that rare words probably are not to
blame for the power law decay.

The log-log plots reveal that there is a speed up of the decay in the number of recom-
mendations approximately from 𝑙𝑜𝑔(𝑦) = 10 to 𝑙𝑜𝑔(𝑦) = 100, which doesn’t happen in the
vanilla model. This is almost imperceptible in the regular plots.

3.3.4 Similarity Models

Since the similarity metric could also be a source of the strange behavior of the
recommendation profile, we conceived the three similarity models described in the last
section. Figure 3.5 showcases a comparison between cosine distance, euclidean distance
and manhattan distance. It is clear that there are no meaningful differences between the
recommendation profiles generated by each metric.

As for the log-log plots, we can clearly see that after a certain point some movies were
simply not recommended at all, with a sharp decay in the number of recommendations
right before that point. This behavior indicates that these distance metrics are even more
biased than cosine similarity.
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(a) Cutoff 𝑘 = 2. (b) Cutoff 𝑘 = 5. (c) Cutoff 𝑘 = 8.

(d) Log-log plot for 𝑘 = 2. (e) Log-log plot for 𝑘 = 5. (f) Log-log plot for 𝑘 = 8.

Figure 3.4: Recommendation profile for cutoff 𝑘 = 2 (a), 5 (b), and 8 (c) with their respective log-log
plots.

3.3.5 Vanilla Model with Synthetic Metadata
At this point it is safe to say that the type of decay seen in recommendation frequencies

up until now is not spurious and must have a clear cause. To better investigate whether
word frequency had an impact on the recommendation profiles another hypothesis was
taken into consideration: do metadata with less words cause the recommendation curves
to display a steep left-hand side?

Figure 3.6 displays the recommendation profiles for the vanilla model applied to
datasets with synthetic metadata. Concretely, the figures are equivalent to creating random
metadata for the movies where the probability of any single word being selected was
approximately 1.54 × 10−4, 1.54 × 10−3, and 1.54 × 10−2 respectively. The results do support
the aforementioned hypothesis since denser vectors indeed affected the decay.

The log-log plots make it clear that these models approach the trivial model as the meta-
data become denser and denser. This suggests that the metadata of the movies have become
too similar and, therefore, recommendations were essentially happening at random.

3.3.6 Sanity Checks
After the previous experiments, sanity checks were needed in order to verify that our

previous results weren’t spurious. The first check should check whether an artificial movie
created as a combination of the metadata from other movies favored by the recommen-
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(a) Cosine distance. (b) Euclidean distance. (c) Manhattan distance.

(d) Log-log plot for Cosine. (e) Log-log plot for Euclidean. (f) Log-log plot for Manhattan.

Figure 3.5: Recommendation profile for cosine (a), euclidean (b), and manhattan (c) distances with
their respective log-log plots.

dation algorithm would also be favored (i.e. we are able to create a popular movie from
other popular movies), while the second should check whether shorter vectors would
change the decay already observed despite being as sparse as their longer counterparts
(i.e. the intrinsic properties of the dataset aren’t responsible for the power law decay). We
repeated these tests thousands of times and the results presented below are typical of what
we found.

Figure 3.7 showcases the two sanity checks. Figure 3.7a was a model applied to the
vanilla dataset with the addition of the movie highlighted as a red square. As expected, this
movie also showed up in the top-recommended subset. Figure 3.7b comes from a model
applied to randomly generated vector representations in a similar fashion to the ones in
Figure 3.6, except each vector could only have 15,000 elements instead of 55,681 (as with
the vanilla model).

The last two models were considered the confirmations of the hypothesis that (at
least for this kind of recommendation systems) a subset of items was always much more
recommended than the rest as long as the data was sparse. Figure 3.8a represents the
same recommendation algorithm applied to another dataset, the Book-Crossing dataset.
Figure 3.8b contains the results of the model applied to another set of random vector
representations, this time with the probability of each element being non-zero respecting
the marginal distributions of the vanilla dataset. Again, the power law decay pattern
persisted, only slightly less pronounced in the Book-Crossing case.
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(a) 𝑃(𝑤𝑖) = 1 × 𝑃(𝑤). (b) 𝑃(𝑤𝑖) = 10 × 𝑃(𝑤). (c) 𝑃(𝑤𝑖) = 100 × 𝑃(𝑤).

(d) Log-log plot for 1 × 𝑃(𝑤). (e) Log-log plot for 10 × 𝑃(𝑤). (f) Log-log plot for 100 × 𝑃(𝑤).

Figure 3.6: Recommendation profile of samples with 𝑃(𝑤𝑖) = 𝐶 × 𝑃(𝑤), 𝐶 = 1 (a), 10 (b), and 100 (c)
with their respective log-log plots.

(a) Vanilla model with artificial movie in red. (b) Model with short vector representations.

Figure 3.7: Recommendation profile for artificial movie (a) and short vector representations (b).
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(a) Recommendation profile for book dataset. (b) Random simularion of vanilla.

Figure 3.8: Recommendation profile for book dataset (a) and random simulation of vanilla (b).

The analysis up until now has been static, that is, the recommendation model does
not learn from the users’ responses to its suggestions. There is no interaction with users
and no opportunity to evolve over time. The next chapter addresses this point by using
Google’s newly released TensorFlow Recommenders library (TensorFlow Recommenders
2021) to gather data about what happens to a system’s recommendations as users follow
its suggestions. Employing a deep learning model that is able to improve over time is
a significant departure from the content-based models presented here and, if a similar
recommendation profile can also be detected for multi-criteria recommender systems on
dynamic scenarios, then the hypothesis ventilated in the section above would become
even more plausible.
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Chapter 4

Dynamic Analysis

Following the static analysis, we moved on to the dynamic analysis. Understanding
how the recommendation model responds to users reinforcing its internal biases, like
the ones already detected, could potentially lead to a better understanding of how these
systems favor certain kinds of content. We also were not able to find any published dataset
that fit our experimental design.

The hypothesis is that the recommendation profile will grow even more steep, which
is a reasonable idea; if the users reinforce the beliefs of the algorithm, then it stands to
reason that it will recommend popular items with more and more frequently, to more and
more users. How much more frequently, however, is the true question.

For the sake of clarity, let us imagine two users with very distinct preferences: Alice,
who enjoys adventure movies, and Bob, who enjoys horror movies. In principle, the
algorithm should have very different recommendations for both of them and, were they to
follow them, their custom suggestions should grow increasingly different. At the end of this
experiment, users like Alice would all be recommended the same movies, and users like Bob
would have their own set of very popular films; we should expect, therefore, a multimodal
distribution of the recommendation frequencies, with "typical" adventure movies and
"typical" horror movies being much more popular than comedy, for example.

However, if the final recommendation profile looked like what was showcased in the
previous chapter, i.e. a very small subset of movies being recommended to most users,
then we could infer that the system devolved into a degenerate feedback loop, ignoring
personal preferences and distinctions between films.

4.1 Datasets
For the dynamic experiments, we kept using the Movielens dataset (Harper and

Konstan, 2015). This time, however, we used the full “1M” dataset instead of sampling
movies from the larger “25M” version. Given that we wanted our dynamic analysis to be
conducted in a realistic scenario, we decided that it would be better not to change the data.
This whole experiment will, therefore, use a version of the dataset commonly used for
machine learning benchmarks with no alteration whatsoever.
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The 1M dataset contains 1000209 ratings of almost 4000 movies made by over 6000
anonymous MovieLens users who joined the platform in 2000. In this particular version,
each user has made at least 20 ratings. There are 4 columns available:

• UserID: Unique user identifier, ranging from 1 to 6040.

• MovieID: Unique movie identifier, ranging from 1 to 3952.

• Rating: Movie rating according to user, from 0 to 5 stars.

• Timestamp: When the user made the rating, in seconds since the epoch.

A second, auxiliary, dataset was also used to enrich the main one. “Movies” contains
extra information about the movies in 1M, which allowed us to add more variables to the
recommendation system. This new dataset has 3 columns:

• MovieID: Unique user identifier, ranging from 1 to 6040.

• Title: Title of the movie, as provided by IMDB.

• Genres: Pipe-separated string with all applicable genres.

Figure 4.1a showcases the distribution of ratings from the “1M” dataset and Figure 4.1b
showcases the distribution of genres from the “Movies” dataset. Note that, for both this
visualization and the rest of the chapter, the genre of each movie is taken to be the first
one listed on the Genres column.

(a) Rating distribution. (b) Genre distribution.

Figure 4.1: Distributions of ratings (a) and genres (b).

4.2 Formal Model
The goal of the dynamic analysis is to better understand how the interaction between

recommendation systems and their users can reinforce internal biases such as the ones
detected in Chapter 3.
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In order for this analysis to be more robust, we implemented a simple recommendation
algorithm using TensorFlow Recommenders (TensorFlow Recommenders 2021), a library
for machine learning developed by Google for use with its TensorFlow (TensorFlow: A
System for Large-Scale Machine Learning | USENIX 2022) framework. This means that, even
though our model is deliberately bare-bones, it conforms to industry-standard technology
and practices.

The choice to use a simple recommendation algorithm instead of a more complex one
was twofold: first, we did not want to use a model that could introduce many confound-
ing parameters to the analysis (e.g. hyperparameters, hardware requirements, etc.), and
second, we wanted to study a baseline that could, in the future, be used as a comparison
point for more complex algorithms. Our algorithm is, therefore, a straightforward neural
network.

The chosen recommendation algorithm was a basic ranking model described in Recom-
mending movies (2022). It is composed of multiple stacked dense layers and uses regularized
mean squared error as its loss function in order to avoid overfitting. The main class in
the model is reproduced below in Program 4.1, and the full algorithm is listed in Ap-
pendix A.

1 class MovielensModel(tfrs.models.Model):
2
3 def __init__(self):
4 super().__init__()
5 self.ranking_model: tf.keras.Model = RankingModel()
6 self.task: tf.keras.layers.Layer = tfrs.tasks.Ranking(
7 loss = tf.keras.losses.MeanSquaredError(),
8 metrics=[tf.keras.metrics.RootMeanSquaredError()]
9 )

10
11 def call(self, features: Dict[str, tf.Tensor]) -> tf.Tensor:
12 return self.ranking_model(
13 (features["user_id"], features["movie_title"]))
14
15 def compute_loss(self, features: Dict[Text, tf.Tensor],
16 training=False) -> tf.Tensor:
17 labels = features.pop("user_rating")
18
19 rating_predictions = self(features)
20
21 # The task computes the loss and the metrics.
22 return self.task(labels=labels, predictions=rating_predictions)

Program 4.1: MovielensModel

We then trained the recommendation model using Movielens’ 1M ratings dataset,
which we will refer to as ratings0 from now on. Evaluating our model, called model0, on
test data yielded a root mean squared error (RMSE) of 0.92; this result is similar to TFRS’
deep & cross network (R. Wang et al., 2017) results when trained on the same data.

Once model0 was ready to start making recommendations, we applied it to every
possible user-movie pairing, generating a complete matrix of predicted ratings called
predictions0.
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A feedback loop, however, cannot be created from a single iteration. In an environment
like YouTube’s recommendations sidebar, the user is presented with a few items that the
algorithm thinks they would like, and then they can select one of the options to watch. We
can simulate a user going through this process by selecting one movie from each user’s
best-ranked entries in predictions0.

After doing this selection, we can remove the oldest rating of each each user from
ratings0 and append these these new selections to the dataset in order to create ratings1
(a new simulated watch history). Removing the oldest rating was necessary because the
algorithm was build to receive a history of at most 10 items. The full data flow is illustrated
in Figure 4.2.

Figure 4.2: Data flow diagram.

4.3 Experiments

The dynamic experiment starts in a manner much similar to the static experiment. The
full MovieLens dataset is fed as training data to a recommendation system in order to get
it ready for giving suggestions to users. As explained above, we chose a simple algorithm,
(i.e., without rich features or complex layer arrangements) in order to reduce the number
of possible interferences architecture could have on our analysis.

We repeated the process of creating new watch history datasets and training new
models with them until we got to ratings4, totaling 5 ratings datasets (one original and 4
derived through ranking models). Since we were not taking personal taste into account,
we assumed that no user ever ignores their recommendations and always picks one movie
at random from their own 10 best-ranked recommendations.

With these new datasets we were able to analyze the differences between distinct
generations of models and understand exactly how the positive feedback loop influenced
the last iteration.
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Figure 4.3 has five subplots which represent the recommendation profile of each
iteration of the recommendation system. For ratings0, it is possible to see that a number
of well-rated movies were more popular, i.e., were rated by more people. Once we generate
the first batch of recommendations, we add up the number of users each movie was
recommended to; this is seen in the second plot, ratings1. The outlier points to the left
clearly indicate that a small subset of movies strayed from the pack and were recommended
to more people than had watched them previously.

This process repeats itself until, in ratings4, the most popular movie is recommended
more than 2000 times, while the most popular movie in ratings0 was watched a little
over 500 times.

As explained before, we expected that movies which where already popular would be
recommended more times, but these plots indicate a powerful feedback loop. Examining
the data, we saw that the algorithm was consistently recommending movies which the
users had already watched and this process only became more accentuated with each
subsequent iteration. This is in line with recommendations from large social networks
like YouTube, which do recommend videos that were already watched by the user.

Table 4.1 contains the most recommended movies of every generation of the experiment.
Just as in Chapter 3, the number of "recommendations" of generation 0 (i.e. the original
dataset) is taken to be the number of reviews each movie received. It is remarkable that the
most recommended movies in generation 4 were neither the most popular nor the highest
rated in generation 0. The full table (with movie names) can be seen in Appendix B.

A good way to measure how diverse were the recommendations made by the algo-
rithm is to calculate the entropy (Borda, 2011) of each set. This metric is defined for a
discrete random variable 𝑋 , which can assume values form the alphabet 𝜒 , through the
formula:

𝐻 (𝑋 ) = −∑

𝑥∈𝜒

𝑝(𝑥) log 𝑝(𝑥).

In the extreme, if the same movie is recommended to every user, than the entropy of
the recommendations will tend to zero. In absolute terms, the entropy of ratings0 was
7.42, and the entropy of ratings4 was 6.08 (18% lower). A comparison in relative terms is
displayed in Figure 4.4.

We can also observe this reduction of variety in an even more visual way. In Figure 4.5
we plotted movie popularity over time; each line represents a movie and each step in the
x-axis is a new generation of the model. Figure 4.5a makes it very clear that only 13 movies
rose in popularity over the four generations of the recommendation system, becoming
orders of magnitude more popular than the rest. We also scaled the y-axis by taking its
log in Figure 4.5b, and we can see that, in fact, no other movie rose in popularity besides
the ones that stick out after model2.

It is also of note that the few movies that rise in popularity are not the most popular
ones from ratings0, even though genre was the only metadata we fed into the system.
This uncovers a significant feature of the feedback loop we observed in Figure 4.3: the
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Figure 4.3: Recommendation profile of every generation. Colors indicate average movie rating, which
is a strong predictor of popularity over time.
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Movie Recommendations
ID Generation 0 Generation 1 Generation 2 Generation 3 Generation 4
50 95 715 1292 1898 1888

260 160 140 772 750 738
318 115 705 1296 1908 2468
527 106 663 657 1256 1822
608 175 163 151 133 113
745 44 664 1252 1810 2436
858 103 669 1261 1861 2422
904 79 644 1252 1243 1814
922 36 601 1191 1786 2385

1148 47 629 1217 1808 2432
1198 99 520 500 1119 1718
1212 30 24 606 1172 1168
1580 174 156 134 113 98
2019 37 652 1276 1881 2496
2396 202 180 163 136 106
2628 165 149 135 115 97
2762 256 230 201 171 135
2858 198 170 148 134 111
2987 244 229 218 205 185
3176 197 186 172 159 136
3578 208 194 176 157 136
3793 210 204 189 179 158

Table 4.1: Every movie featured in the top 10 most recommended of at least one generation.

Figure 4.4: Recommendation entropy as a percentage of ratings0s entropy.
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items that the algorithm amplifies don’t necessarily have to be the most mainstream, or in
other words, recommendation systems are able to boost content artificially.

(a) Movie popularity over time. (b) Movie log-popularity over time.

Figure 4.5: Popularity of every movie from ratings0 to ratings4.

4.4 Modeling

Deep learning models are extremely powerful and versatile; they are not, however,
very explainable (Roscher et al., 2020). Recommendation algorithms are often described
as black boxes because of the seemingly inscrutable impact that different inputs have on
the output. The term "neural hallucination" (Raunak et al., 2021) has even been coined to
explain the process by which neural networks infer missing information form incomplete
data.

Since we did identify a feedback loop in the recommendation system, our next goal
was to fit a regression model on the generated data. Interpretability via surrogate models
could help clarify how the algorithm had made it’s recommendations; if we were able to
create a regression model that replicated the behavior of the system, then we could make
inferences about the algorithm based on the characteristics of said model.

As is common in computational inference (Robert, 2011), our process involved multiple
rounds of modeling. We started with a very simple model and, according to goodness-of-fit
measurements, made it more and more complex in order to achieve a better representation
of the behavior of the recommendation system. As we will see later, even after feeding all
of the the available data (and some extra metadata that the recommender algorithm didn’t
have access to), our models were not able to capture such a degenerate distribution.

For every model described below, the response variable 𝑌 is the number of recommenda-
tions a movie received at a specific moment in time, while 𝜆 is the average recommendation
rate (conditioned to a movie’s genre and rating) at a specific moment in time.
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4.4.1 Poisson Regression
From the quasi-exponential decay observed in Figure 4.3, we hypothesized that the

logarithm of popularity was a function of the linear combination of genre, generation
and rating. Our first attempt was, therefore, a simple Poisson regression (Allison and
Waterman, 2002). For this kind of model, we fit a regression of the form

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 +⋯ + 𝛽𝑘𝑥𝑖𝑘,

where 𝜆𝑖 is the Poisson parameter, 𝑥𝑖𝑘 is the regressor variable, and 𝛽𝑖 is the regression
coefficient. To implement the regression, we used R’s glm() (R Core Team, 2022) function
with popularity being modeled by the factor crossing of generation (i.e., the iteration from
0 to 4), genre and average rating.

As the reader might be able to see, we used the genre variable in our regression model
even though we didn’t feed it to the recommendation system. As explained before, the
algorithm only had access to the popularity and ratings of the movies, but it is possible the
there exists a latent effect of genre on the other variables; since a machine learning system
is much more flexible than a regression model, we opted to explicitly feed the genre into
the Poisson model and all others that followed.

glm() and all other regression functions return the coefficients of the regression
alongside their calculated significance. However, analyzing the coefficients by themselves
is only one part of the full picture. Atkinson (1987) proposed the usage of simulated
envelopes, alongside coefficient significance, to assess global goodness-of-fit.

This method is such that, under the correct model, the plot for the observed data is
likely to fall within the envelope. The objective is not to provide a region of acceptance,
but some sort of guidance to what kind of shape to expect.

Obtaining the simulated envelope consists of fitting a model; extracting model diag-
nostics and calculating sorted absolute values; simulating the desired number of response
variables using the same model matrix, error distribution and fitted parameters; fitting the
same model to each simulated response variable and obtaining the same model diagnostics,
again sorted absolute values; and computing the desired percentiles (in this case, 2.5% and
97.5%) at each value of the expected order statistic to form the envelope. In our case, the
expected order statistic was obtained through the following normal distribution:

Φ
−1
(
𝑖 + 3/8

𝑛 + 1/4
)

For illustrative purposes, we will present the full output of the Poisson model below.
It is notable how many coefficients are considered highly significant, meaning that, indi-
vidually, they were able to capture the feedback loop generated by the recommendation
system.

Call:
glm(formula = pop ~ t * genre * rating, family = "poisson", data = features)
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Deviance Residuals:
Min 1Q Median 3Q Max

-33.145 -3.088 -1.222 1.260 93.001

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.210e-02 9.514e-02 0.968 0.333031
t -6.844e-02 4.200e-02 -1.629 0.103208
genreAnimation -2.276e+00 1.475e-01 -15.430 < 2e-16 ***
genrechildren’s 1.489e-02 1.754e-01 0.085 0.932347
genreComedy -1.904e-01 1.041e-01 -1.828 0.067539 .
genreCrime -4.898e+00 1.858e-01 -26.364 < 2e-16 ***
genreDocumentary -1.801e+00 4.491e-01 -4.010 6.07e-05 ***
genreDrama -1.035e+00 1.140e-01 -9.086 < 2e-16 ***
genreFilm-Noir -1.631e+01 5.403e-01 -30.185 < 2e-16 ***
genreHorror 3.012e-01 1.178e-01 2.556 0.010582 *
genreMusical -2.784e+00 4.813e-01 -5.784 7.31e-09 ***
genreMystery -4.849e+00 2.464e-01 -19.681 < 2e-16 ***
genreRomance -1.476e+00 5.299e-01 -2.785 0.005347 **
genreSci-Fi 1.583e+00 1.898e-01 8.341 < 2e-16 ***
genreThriller 3.854e-01 1.791e-01 2.152 0.031394 *
genreWestern -4.253e+00 5.017e-01 -8.476 < 2e-16 ***
rating 8.877e-01 2.740e-02 32.395 < 2e-16 ***
t:genreAnimation -3.139e+00 6.223e-02 -50.435 < 2e-16 ***
t:genrechildren’s -5.212e-04 7.760e-02 -0.007 0.994641
t:genreComedy -2.235e-02 4.602e-02 -0.486 0.627215
t:genreCrime -3.561e+00 8.570e-02 -41.557 < 2e-16 ***
t:genreDocumentary 2.463e-01 1.933e-01 1.274 0.202583
t:genreDrama -1.845e+00 5.015e-02 -36.799 < 2e-16 ***
t:genreFilm-Noir -5.419e+00 1.944e-01 -27.872 < 2e-16 ***
t:genreHorror 7.776e-03 5.217e-02 0.149 0.881511
t:genreMusical 1.190e-01 2.140e-01 0.556 0.578236
t:genreMystery -3.676e+00 1.032e-01 -35.632 < 2e-16 ***
t:genreRomance -8.909e-02 2.334e-01 -0.382 0.702658
t:genreSci-Fi -2.251e+00 8.076e-02 -27.869 < 2e-16 ***
t:genreThriller 6.362e-02 7.894e-02 0.806 0.420240
t:genreWestern 5.290e-02 2.211e-01 0.239 0.810874
t:rating -1.584e-02 1.212e-02 -1.307 0.191193
genreAnimation:rating 7.049e-01 3.938e-02 17.900 < 2e-16 ***
genrechildren’s:rating -4.814e-02 5.303e-02 -0.908 0.364006
genreComedy:rating 1.711e-02 2.989e-02 0.572 0.567055
genreCrime:rating 1.261e+00 4.818e-02 26.161 < 2e-16 ***
genreDocumentary:rating 5.638e-02 1.160e-01 0.486 0.626776
genreDrama:rating 1.163e-01 3.199e-02 3.635 0.000278 ***
genreFilm-Noir:rating 3.865e+00 1.239e-01 31.197 < 2e-16 ***
genreHorror:rating -1.456e-01 3.541e-02 -4.111 3.95e-05 ***
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genreMusical:rating 6.395e-01 1.255e-01 5.095 3.50e-07 ***
genreMystery:rating 1.286e+00 6.114e-02 21.030 < 2e-16 ***
genreRomance:rating 3.492e-02 1.506e-01 0.232 0.816639
genreSci-Fi:rating -5.037e-01 5.457e-02 -9.230 < 2e-16 ***
genreThriller:rating -1.952e-01 5.094e-02 -3.833 0.000127 ***
genreWestern:rating 9.773e-01 1.309e-01 7.467 8.19e-14 ***
t:genreAnimation:rating 8.263e-01 1.631e-02 50.671 < 2e-16 ***
t:genrechildren’s:rating -1.370e-03 2.350e-02 -0.058 0.953503
t:genreComedy:rating 6.194e-03 1.323e-02 0.468 0.639610
t:genreCrime:rating 9.129e-01 2.163e-02 42.204 < 2e-16 ***
t:genreDocumentary:rating -5.843e-02 5.002e-02 -1.168 0.242813
t:genreDrama:rating 5.028e-01 1.399e-02 35.927 < 2e-16 ***
t:genreFilm-Noir:rating 1.279e+00 4.402e-02 29.061 < 2e-16 ***
t:genreHorror:rating -6.526e-03 1.573e-02 -0.415 0.678237
t:genreMusical:rating -3.530e-02 5.588e-02 -0.632 0.527603
t:genreMystery:rating 9.553e-01 2.495e-02 38.291 < 2e-16 ***
t:genreRomance:rating 3.023e-02 6.624e-02 0.456 0.648140
t:genreSci-Fi:rating 6.707e-01 2.195e-02 30.551 < 2e-16 ***
t:genreThriller:rating -1.870e-02 2.252e-02 -0.830 0.406351
t:genreWestern:rating -1.209e-02 5.768e-02 -0.210 0.834031
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 562028 on 13559 degrees of freedom
Residual deviance: 268737 on 13500 degrees of freedom
AIC: 318813

Number of Fisher Scoring iterations: 6

When we look at the simulated envelope of this regression, however, it is plain to
see that the model does not conform to the delimited region and, therefore, isn’t able to
properly capture the variability of the data. The plot generated with the hnp (Moral et al.,
2017) R package can be seen in Figure 4.6.

4.4.2 Negative Binomial Regression
Our next attempt involved a generalization of the previous regression. In a Poisson

model, both mean and variance are assumed to be the same; this could be limiting our
previous attempt, since it cannot capture overdispersed data. The negative binomial
distribution is a generalization of the Poisson distribution (Allison and Waterman, 2002)
that is able to better model data under these new assumptions. For this kind of model, we
fit a regression of the form

log(𝜆𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 +⋯ + 𝛽𝑘𝑥𝑖𝑘,
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Figure 4.6: Residual analysis via simulated envelope for the Poisson regression.

where 𝜆𝑖 depends on covariates, as does 𝑥𝑖𝑘. More concretely, we used MASS’s (Venables
and Ripley, 2002) glm.nb() function with the same formula as last time.

In this instance, the significancy of the coefficients of the regression (omitted) was
even higher than of the Poisson model. However, upon calculating the simulated envelope,
as seen in Figure 4.7, it became clear that this model, while better than the last, still was
not adequately capturing the data’s variability.

4.4.3 Mixed-effects Poisson Regression
Since both previous models failed to accurately capture the algorithm’s recommenda-

tion profile, we moved on to mixed-effects models given their usefulness in longitudinal
studies (Gomes, 2022). With this kind of model we would be able to vary the coefficients
from movie to movie (since we applied the mixed-effect to the movie_id variable), allowing
some movies to have steeper recommendation profiles than others.

The Poisson mixed-effects model can be generalized (Fox, 2023) from the standard
model by adding normally distributed random-effects to the usual fixed-effects already
described:

log(𝜆𝑖) = 𝛿 + 𝛽0 + 𝛽1𝑥𝑖1 +⋯ + 𝛽𝑘𝑥𝑖𝑘,

where 𝛿 ∼  (0, 𝜓) allows us to better model longitudinal observations within the same
individual (which are not independent of each other) and serially correlated errors. In our
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Figure 4.7: Residual analysis via simulated envelope for the negative binomial regression.

regression, we added mixed-effects to the movie_id variable using the glmmTMB (Brooks
et al., 2017) R package.

As with our previous regressions, we evaluate the fit of the model not only through
the significancy of the coefficients (which were on par with the other models), but also
through the simulated envelope. Since we used a different R package to run the mixed-
effects models, we also had to resort to another simulation package: DHARMa (Hartig,
2022); this means that the new plots in Figure 4.8 follow a different aesthetic convention
and displays more information by default.

Note how the fit is much better than the fixed-effects models, but the outliers on the
left and right sides of the distribution are still present as attested by the outlier deviation
test.

4.4.4 Mixed-effects Negative Binomial Regression
Our last attempt at capturing the recommendation profile of the recommender system

involved using a negative binomial mixed-model regression in order to help with the
overdispersion seen above. Similar to the Poisson mixed-effects model, this regression also
extends the default formula of its fixed-effects counterpart:

log(𝜆𝑖) = 𝛿 + 𝛽0 + 𝛽1𝑥𝑖1 +⋯ + 𝛽𝑘𝑥𝑖𝑘.

In the table below, the reader can see the full summary of the negative binomial mixed
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Figure 4.8: Residual analysis via simulated envelope for the mixed-effects Poisson regression.

model. Figure 4.9 showcases the simulated envelope for the same model.

Family: nbinom2 ( log )
Formula: pop ~ t * genre * rating + (1 | movie_id)
Data: features

AIC BIC logLik deviance df.resid
83863.8 84370.3 -41865.9 83731.8 15844

Random effects:

Conditional model:
Groups Name Variance Std.Dev.
movie_id (Intercept) 1.364 1.168
Number of obs: 15910, groups: movie_id, 3182

Dispersion parameter for nbinom2 family (): 49

Conditional model:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.108714 0.272464 -0.399 0.689891
t -0.210272 0.021153 -9.941 < 2e-16 ***
genreAdventure 0.112129 0.574197 0.195 0.845174
genreAnimation -2.286362 0.773873 -2.954 0.003132 **
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genrechildren’s 0.855196 0.755919 1.131 0.257915
genreComedy -0.108159 0.352431 -0.307 0.758925
genreCrime -3.590470 0.850227 -4.223 2.41e-05 ***
genreDocumentary -1.659325 1.508329 -1.100 0.271285
genreDrama -1.219969 0.409312 -2.981 0.002877 **
genreFilm-Noir -16.633103 2.371128 -7.015 2.30e-12 ***
genreHorror 0.512807 0.443025 1.158 0.247062
genreMusical -4.259252 2.088483 -2.039 0.041410 *
genreMystery -4.646920 1.461852 -3.179 0.001479 **
genreRomance -2.118789 1.856289 -1.141 0.253699
genreSci-Fi 0.363380 1.044431 0.348 0.727899
genreThriller 1.382908 0.855392 1.617 0.105944
genreWestern -3.766758 2.108848 -1.786 0.074072 .
rating 0.957533 0.085468 11.203 < 2e-16 ***
t:genreAdventure 0.161327 0.053403 3.021 0.002520 **
t:genreAnimation -0.392012 0.067698 -5.791 7.01e-09 ***
t:genrechildren’s 0.116028 0.066946 1.733 0.083068 .
t:genreComedy 0.119502 0.030504 3.918 8.94e-05 ***
t:genreCrime -0.146821 0.085503 -1.717 0.085952 .
t:genreDocumentary 0.329357 0.195776 1.682 0.092507 .
t:genreDrama 0.005393 0.038739 0.139 0.889287
t:genreFilm-Noir -0.730742 0.227275 -3.215 0.001303 **
t:genreHorror 0.148203 0.041813 3.544 0.000393 ***
t:genreMusical 0.265118 0.243060 1.091 0.275383
t:genreMystery -1.150785 0.123034 -9.353 < 2e-16 ***
t:genreRomance 0.064921 0.227735 0.285 0.775590
t:genreSci-Fi -0.311108 0.079779 -3.900 9.63e-05 ***
t:genreThriller 0.134758 0.077077 1.748 0.080403 .
t:genreWestern 0.184582 0.216581 0.852 0.394073
t:rating 0.029594 0.006273 4.717 2.39e-06 ***
genreAdventure:rating -0.209253 0.179840 -1.164 0.244606
genreAnimation:rating 0.594327 0.226301 2.626 0.008633 **
genrechildren’s:rating -0.473591 0.247951 -1.910 0.056131 .
genreComedy:rating -0.194909 0.109223 -1.785 0.074341 .
genreCrime:rating 0.736375 0.243050 3.030 0.002448 **
genreDocumentary:rating -0.113489 0.399299 -0.284 0.776242
genreDrama:rating -0.031020 0.120957 -0.256 0.797601
genreFilm-Noir:rating 3.958891 0.595316 6.650 2.93e-11 ***
genreHorror:rating -0.422452 0.151685 -2.785 0.005352 **
genreMusical:rating 0.944897 0.569196 1.660 0.096903 .
genreMystery:rating 1.092607 0.409047 2.671 0.007560 **
genreRomance:rating 0.013712 0.548422 0.025 0.980053
genreSci-Fi:rating -0.423339 0.324094 -1.306 0.191477
genreThriller:rating -0.729129 0.256016 -2.848 0.004400 **
genreWestern:rating 0.725673 0.578412 1.255 0.209625
t:genreAdventure:rating -0.053250 0.015828 -3.364 0.000768 ***



38

4 | DYNAMIC ANALYSIS

t:genreAnimation:rating 0.110189 0.018603 5.923 3.16e-09 ***
t:genrechildren’s:rating -0.039499 0.020922 -1.888 0.059031 .
t:genreComedy:rating -0.039790 0.008913 -4.464 8.04e-06 ***
t:genreCrime:rating 0.038460 0.022654 1.698 0.089557 .
t:genreDocumentary:rating -0.088874 0.050610 -1.756 0.079076 .
t:genreDrama:rating -0.006800 0.010754 -0.632 0.527202
t:genreFilm-Noir:rating 0.183567 0.054187 3.388 0.000705 ***
t:genreHorror:rating -0.052874 0.013574 -3.895 9.81e-05 ***
t:genreMusical:rating -0.082105 0.063538 -1.292 0.196285
t:genreMystery:rating 0.335177 0.032553 10.296 < 2e-16 ***
t:genreRomance:rating -0.018634 0.064877 -0.287 0.773939
t:genreSci-Fi:rating 0.108210 0.023442 4.616 3.91e-06 ***
t:genreThriller:rating -0.044310 0.022584 -1.962 0.049758 *
t:genreWestern:rating -0.055461 0.056878 -0.975 0.329521
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Figure 4.9: Residual analysis via simulated envelope for the mixed-effects negative binomial regression.

In comparison to the Poisson mixed model, the negative binomial mixed model is 2.5
times less dispersed and the outlier deviation is 4 times lower. Still, this was not enough to
capture accurately the recommendation profile of our system for the more popular movies
(left tail of the rightmost plot).

At this point, it is safe to assume that this distribution tends towards degeneracy, mean-
ing it approaches a situation (Weisstein, 2022) where only one movie is recommended
every single time and all others are never recommended.
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Chapter 5

Conclusion

In this work, we studied recommender system bias. As detailed in Chapter 1, these
algorithms are pervasive in modern live and have significant impact on our information
diet; however, a growing body of evidence indicates that these systems, specially when
deployed in large social networks, can display significant biases in their recommendations.
Researchers and activists alike worry that these biases might create echo chambers and
radicalization pipelines by amplifying extremist content. In broad terms, our goal was to
study one way through which these algorithms might be boosting fringe viewpoints and
radicalizing users: degenerate feedback loops.

Degeneracy in recommender systems has been explored before by Nguyen et al. (2014)
and Jiang et al. (2019). They concluded that these algorithms show a tendency to reduce
the diversity of recommended content over time because of the feedback loop that occurs
when the system must learn from the its own outputs. Our main research objective was
to further characterize and model this behavior using both qualitative and quantitative
methods.

In Chapter 2, we reviewed the scientific literature that deals with this topic and pre-
sented a few different viewpoints on the matter. Works by Hosseinmardi et al. (2020),
Huszár et al. (2021), and others suggest that social networks tend to amplify far-right
views, while Munger and Phillips (2020) and Ledwich and Zaitsev (2019) posit that
this is not the case. M. H. Ribeiro et al. (2020) found evidence that, in general, YouTube
users tend to migrate from "lighter" content towards more extreme videos, and Stoica,
Riederer, et al. (2018) coined the term “algorithmic glass ceiling” to describe recommender
system’s propensity to reinforce homophilic behavior.

We also drew attention to non-scientific endeavors that attempt to better understand
filter bubbles, echo chambers, and their impacts on the public. While this issue is being
debated in academia, journalists and whistleblowers like P. V. Ribeiro (2021) or Wong
(2021) hold social media companies accountable by gathering anecdotal evidence and
personal accounts about algorithmic bias.

Our main contributions come in Chapters 3 and 4, where we describe and conduct
multiple experiments on recommender algorithms.
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5.1 Static Analysis
Chapter 3 started with a question: can recommender systems send users in radical-

ization spirals? Given the many limitations of social media analysis, we argue that the
best way to answer this question is to explore the simplest and most bare-bones algorithm
possible. Our hypothesis is that, if such a simple algorithm displays a feedback loop
dynamic, then there might be some intrinsic property of this type of system that pushes
recommendations towards degeneracy.

We designed our experiments with the goal of analyzing the recommendation profile of
our algorithm of choice: a simple, content-based recommender that used cosine similarity
as its internal metric. Recommendation profile is a concept we developed as a shorthand
for an algorithm’s characteristic tendency to recommend more frequently a smaller (or
larger) subset of the original data.

Our expectation was that a systems’s recommendation profile would be approximately
the same as the original dataset’s item popularity distribution; users that enjoyed less
popular movies would be recommended other unpopular items and users that enjoyed
the more popular movies would likewise be recommended other prominent items. This,
however, was not the case.

In the original MovieLens (Harper and Konstan, 2015) dataset, the popularity distri-
bution was sub-exponential, meaning that there was not a sharp decrease in the number of
reviews from the most popular movies to the least popular ones. This was in stark contrast
to our vanilla model’s exponential recommendation profile. Figure 5.1 displays the two
profiles side-by-side for ease of reference.

(a) Popularity distribution. (b) Recommendation profile.

Figure 5.1: Comparison between the original dataset’s review profile (a) and the vanilla algorithm’s
recommendation profile.

We experimented on five variations to the vanilla model and of the original dataset,
but all of them displayed exponential or super-exponential recommendation profiles. This
led us to posit that, indeed, recommender systems might be prone to artificially amplifying
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some contents independently of the original data. However, this static analysis was only
part of the story and, in order to confirm this hypothesis, we needed to take user dynamics
into account.

5.2 Dynamic Analysis

We followed up the static experiments with a dynamic analysis. The main question
that motivated Chapter 4 was whether the amplification pipeline detected in Chapter 3
would be even further emphasized by the interaction between user and recommendation
system.

Even though we used a bare-bones algorithm again, this time we went with Google’s
own machine learning library: TensorFlow Recommenders (TensorFlow Recommenders
2021). Our goal was to capture the dynamics that arise when a machine learning system
has to learn from its own data, i.e., the engagement of a user with items recommended by
the algorithm itself. Since we needed to generalize our conclusions to the environment of
a social network, the library Google uses to build its recommendation engines was the
ideal choice.

Using the same MovieLens (Harper and Konstan, 2015) dataset, we created a loop
where the system would recommend 10 movies to a simulated user, this user would then
chose one movie at random to "watch", and this interaction would be fed back into the
model as a new input. This process was repeated five times for each user in the original
dataset.

Just as with the static experiments, the recommendation profile of our algorithm got
steeper and steeper over time, resulting in a similar super-exponential decay; a diminishing
set of movies was being recommended to a growing number of users (as can be seen in
Figure 5.2). Interestingly, the movies that grew in popularity with time were not the most
popular ones in the original dataset.

In order to better understand the progression of the recommendation profile, we tried
to model this behavior using well-understood statistical distributions. If we were able to
accurately reproduce the results we obtained from the machine learning algorithm with
a white-box model, we would gain a deeper insight into the internal mechanisms that
caused the amplification pipeline we were detecting.

We attempted to model the pipeline with Poisson and negative binomial regressions,
but the models presented limitations in both cases. We also tried adding mixed-effects
to these models and were better able to capture the variance of the phenomenon, but a
simulated envelope analysis revealed that our attempts were still falling short.

As with the numbers obtained by Jiang et al. (2019) in a different scenario, the recom-
mendation profiles of our model were tending quickly towards a degenerate distribution.
We believe that this is yet another piece of evidence that suggests that recommender
systems, if left unchecked, tent towards a confinement dynamic where users’ feeds devolve
into filter bubbles and where the points of view of highly-engaged minorities are amplified
by a system that has to learn from itself.
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(a) Movie popularity over time. (b) Recommendation entropy over time.

Figure 5.2: Amplification pipeline detected on the dynamic experiment.

5.3 Recent Developments

While working on this thesis, the number of published papers regarding fairness in
recommender systems continued to grow significantly. Since none of them have a direct
impact on the results presented here and are too recent to have been considered during
the experiment design phase, we present them here for completeness’ sake.

First and foremost, many surveys were published regarding both recommender systems
in general and specifically fair recommendation algorithms. Afsar et al. (2022) and Ko
et al. (2022) both present up-to-date overviews about the field, while Deldjoo et al. (2022),
Y. Wang et al. (2023), and Li et al. (2022) focus on explainable recommenders and fairness
metrics.

Many novel algorithms were also developed during the elaboration of this work.
Naghiaei et al. (2022), Ovaisi et al. (2022), Gao et al. (2022), Patro et al. (2022), Ge et al.
(2022), Yu et al. (2022), Liu et al. (2022), and S. Wang et al. (2022) all present either new
fairer recommender systems or new metrics that can be used to rank existing algorithms
on their bias.

Furthermore, some researchers have found evidence of other possible mechanisms
through which users can become radicalized. Ceylan et al. (2023) flips our hypothesis on its
head, arguing that recommendation systems encourage content creators (not consumers)
to make ever more extreme content in order to attract more attention that their competitors.
C. Wang et al. (2022) goes one step further and finds that some users might actually prefer
biased algorithms. Finally, Benson (2023) removes the algorithmic component almost
entirely, claiming that real-world engagement is the biggest radicalizer of all.
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5.4 Final Remarks
We began this work with the goal of developing a better understanding of the mecha-

nisms through which recommendation algorithms could be radicalizing users, creating
echo chambers and boosting fringe viewpoints. We believe we have found enough evi-
dence to support the hypothesis that recommender systems are able to create amplification
pipelines from degenerate feedback loops.

However, our findings are but one step in the direction of a solid theory. Further
research is still needed in order to find an unambiguous causal between these processes
and, more importantly, how to fix this behavior. A possible next step would involve
applying the methods discussed in this work to more complex recommendation systems
and to larger real-world datasets. Another possible improvement would be to simulate
users that ignore their recommendations.
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Movie Lens Model

Below is the full code for the Movie Lens Model described in Chapter 4. The rest of the
code necessary for this work is available online at https://github.com/clente/recsys/tree/main/code.

from google.colab import drive
drive.mount(’/content/drive’)

file_ratings = "drive/MyDrive/ratings3.csv"
dir_model = "drive/MyDrive/model3"

import os
import pprint
import tempfile

from typing import Dict, Text

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

ratings = tf.data.experimental.make_csv_dataset(
file_ratings, batch_size=1000,
column_defaults=[tf.string,tf.string,tf.int32,tf.string]).unbatch()

ratings = ratings.map(lambda x: {
"movie_title": x["movie_title"],
"user_id": x["user_id"],
"user_rating": x["user_rating"]

})

tf.random.set_seed(42)
shuffled = ratings.shuffle(1_000_000, seed=42, reshuffle_each_iteration=False)

https://github.com/clente/recsys/tree/main/code
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train = shuffled.take(800_000)
test = shuffled.skip(800_000).take(200_000)

unique_movie_titles = np.load(
"drive/MyDrive/unique_movie_titles_1m.npy",
allow_pickle=True

)
unique_user_ids = np.load(
"drive/MyDrive/unique_user_ids_1m.npy",
allow_pickle=True

)

class RankingModel(tf.keras.Model):

def __init__(self):
super().__init__()
embedding_dimension = 32

self.user_embeddings = tf.keras.Sequential([
tf.keras.layers.StringLookup(

vocabulary=unique_user_ids, mask_token=None),
tf.keras.layers.Embedding(

len(unique_user_ids) + 1,
embedding_dimension

)
])

self.movie_embeddings = tf.keras.Sequential([
tf.keras.layers.StringLookup(

vocabulary=unique_movie_titles, mask_token=None),
tf.keras.layers.Embedding(

len(unique_movie_titles) + 1,
embedding_dimension

)
])

self.ratings = tf.keras.Sequential([
tf.keras.layers.Dense(256, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(1)

])

def call(self, inputs):

user_id, movie_title = inputs
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user_embedding = self.user_embeddings(user_id)
movie_embedding = self.movie_embeddings(movie_title)

return self.ratings(tf.concat([user_embedding, movie_embedding], axis=1))

RankingModel()((["42"], ["One Flew Over the Cuckoo’s Nest (1975)"]))

task = tfrs.tasks.Ranking(
loss = tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.RootMeanSquaredError()]

)

class MovielensModel(tfrs.models.Model):

def __init__(self):
super().__init__()
self.ranking_model: tf.keras.Model = RankingModel()
self.task: tf.keras.layers.Layer = tfrs.tasks.Ranking(
loss = tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.RootMeanSquaredError()]

)

def call(self, features: Dict[str, tf.Tensor]) -> tf.Tensor:
return self.ranking_model(

(features["user_id"], features["movie_title"]))

def compute_loss(self, features: Dict[Text,tf.Tensor], training=False) -> tf.Tensor:
labels = features.pop("user_rating")

rating_predictions = self(features)

return self.task(labels=labels, predictions=rating_predictions)

model = MovielensModel()
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))

cached_train = train.shuffle(1_000_000).batch(8192).cache()
cached_test = test.batch(4096).cache()

model.fit(cached_train, epochs=3)

model.evaluate(cached_test, return_dict=True)

test_ratings = {}
test_movie_titles = ["M*A*S*H (1970)", "Dances with Wolves (1990)", "Speed (1994)"]
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for movie_title in test_movie_titles:
test_ratings[movie_title] = model({

"user_id": np.array(["42"]),
"movie_title": np.array([movie_title])

})

print("Ratings:")
for title, score in sorted(test_ratings.items(), key=lambda x: x[1], reverse=True):
print(f"{title}: {score}")

tf.saved_model.save(model, dir_model)

loaded = tf.saved_model.load(dir_model)

loaded({"user_id": np.array(["42"]), "movie_title": ["Speed (1994)"]}).numpy()
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Movie Popularity

Below is the full table with the most recommended movies by each generation of the
model described in Chapter 4.

Original data

ID Title Popularity
2762 Sixth Sense, The (1999) 256
2987 Who Framed Roger Rabbit? (1988) 244
3793 X-Men (2000) 210
3578 Gladiator (2000) 208
2396 Shakespeare in Love (1998) 202
2858 American Beauty (1999) 198
3176 Talented Mr. Ripley, The (1999) 197
608 Fargo (1996) 175

1580 Men in Black (1997) 174
2628 Star Wars: Episode I - The Phantom Menace (1999) 165

Generation 1

ID Title Popularity
50 Usual Suspects, The (1995) 715

318 Shawshank Redemption, The (1994) 705
858 Godfather, The (1972) 669
745 Close Shave, A (1995) 664
527 Schindler’s List (1993) 663

2019 Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954) 652
904 Rear Window (1954) 644

1148 Wrong Trousers, The (1993) 629
922 Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 601

1198 Raiders of the Lost Ark (1981) 520

Generation 2



50

APPENDIX B

ID Title Popularity
318 Shawshank Redemption, The (1994) 1296
50 Usual Suspects, The (1995) 1292

2019 Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954) 1276
858 Godfather, The (1972) 1261
745 Close Shave, A (1995) 1252
904 Rear Window (1954) 1252

1148 Wrong Trousers, The (1993) 1217
922 Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 1191
260 Star Wars: Episode IV - A New Hope (1977) 772
527 Schindler’s List (1993) 657

Generation 3

ID Title Popularity
318 Shawshank Redemption, The (1994) 1908
50 Usual Suspects, The (1995) 1898

2019 Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954) 1881
858 Godfather, The (1972) 1861
745 Close Shave, A (1995) 1810

1148 Wrong Trousers, The (1993) 1808
922 Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 1786
527 Schindler’s List (1993) 1256
904 Rear Window (1954) 1243

1212 Third Man, The (1949) 1172

Generation 4

ID Title Popularity
2019 Seven Samurai (The Magnificent Seven) (Shichinin no samurai) (1954) 2496
318 Shawshank Redemption, The (1994) 2468
745 Close Shave, A (1995) 2436

1148 Wrong Trousers, The (1993) 2432
858 Godfather, The (1972) 2422
922 Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 2385
50 Usual Suspects, The (1995) 1888

527 Schindler’s List (1993) 1822
904 Rear Window (1954) 1814

1198 Raiders of the Lost Ark (1981) 1718
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